

Coronary anomalies (CA) When to offer surgery? Insights from the ANOCOR registry

Pierre Aubry on behalf the ANOCOR Group Department of Cardiology Bichat Hospital, Paris, France

JESFC Statement of Financial Interest

I currently have, or have had over the last two years, an affiliation or financial interests or interests of any order with a company or I receive compensation or fees or research grants with a commercial company :

Speaker's name : Pierre Aubry, Paris

☑ I do not have any potential conflicts of interest to report

Rationale

- Non rare anomalies (≈1/100 invasive angiography/CCTA)
- Benign anomaly or potentially fatal anomaly
- One-third of anomalies identified at risk
- Heterogeneous management in adults
- Lack of recommendations based on RCT
- Few large prospective cohort-based studies

Design

- Observational, prospective, multicentre cohort study
- Inclusion period: January 2010-January 2013
- Recruitment by adult interventional cardiologists (n=71)
- Population ≥15 years with at least one CA diagnosed invasive angiography and/or CTTA and without any structural congenital disease implicating the great vessels

Work supported by Groupe Athérome et Cardiologie Interventionnelle (GACI) - SFC

Methods

- CA were classified according to <u>the ectopic course</u> (prepulmonic, interarterial, subpulmonic and retroaortic)
- CA with <u>an interarterial course</u> were defined as high-risk anomalies
- <u>First endpoint</u>: to describe the initial strategy (absence from treatment, medical treatment, percutaneous or surgical revascularization)
- <u>Secondary endpoint</u>: to describe the outcomes up to 10 years

OJESFC Coronary anomalies courses

Classification

- 1. Prepulmonic
- 2. Interarterial (preaortic)
- 3. Subpulmonic (septal)
- 4. Retroaortic

Cheezum MK et al. J Am Coll Cardiol. 2017.

6

ANOCOR cohort

472 patients ≥15 years (mean age 63 years) [15-95] 496 CA

CA at risk 154 (31%)

Interarterial course

other CA 342 (69%)

Other courses

Aborted sudden cardiac arrest: 12 (2.5%) – 3 related to CA (25%)

OSFC

ANOCOR cohort

R-ANOCOR 147 (95%)

CA at risk 154 (31%)

L-ANOCOR 7 (5%)

OSFC

8

Revascularisation (specific treatment)

CA at risk 154

Revascularisation 15 (10%) other CA 342

Revascularisation 2 (0.6%)

Surgery PCI 12 (80%) 3 (20%)

Interarterial course

Surgery 2 (100%)

Subpulmonic course

9

Revascularisation (specific treatment)

other CA 342

Revascularisation 2 (0.6%)

Surgery 2 (100%)

Subpulmonic course

OSFC

Revascularisation (specific treatment)

R-ANOCOR at risk 147

Revascularisation 13 (10%) L-ANOCOR at risk 7

Revascularisation 2 (29%)

Surgery PCI 10 (77%) 3 (23%) Surgery 2 (100%)

Decision-making

- Age < 35 or \geq 35 years
- Left CA vs. Right CA
- History of aborted cardiac arrest
- Ischemic symptoms/relationship with exertion
- Induced myocardial ischemia with imaging
- Anatomic characteristics (CT scan/angio/IVUS/OCT)
- Physiological assessment (iFR, FFR)
- Sports profile/Patient choice

Surgery/PCI/Medical/Observation/Physical restriction

Age

Type of coronary artery: left vs.right

Prevalence CA in young (cardiac MRI diagnosis)

SCD* in athlete (15-35 years) (individual annual risk)

Left CA at risk: 0.03%

Left CA at risk: 0.2%

Right CA at risk: 0.3%

Right CA at risk: 0.02%

* Sudden cardiac death

Type of coronary artery: left vs.right

202 SCD attributed to L/R-CA

Hoffman JI. Cardiol Young. 2014.

Shiwani H. ACC sessions. 2018.

QJESFC Recommendations

Prevention of sudden cardiac death

2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary

4.3. Surgery and Revascularization Procedures in Patients With Ischemic Heart Disease

Recommendations for Surgery and Revascularization Procedures in Patients With Ischemic							
Heart Disease							
References that support the recommendations are summarized in Online Data Supplement 11.							
COR	LOE	Recommendations American Heart					
I.	B-NR	1. Patients with sustained VA and survivors of SCA should be evaluated for ischemic heart disease, and should be revessularized as appropriate (1.4)					
I	C-EO	 In patients with anomalous origin of a coronary artery suspected to be the 					
		cause of SCA, repair or revascularization is recommended.					

Al-Khatib et al. Circulation. 2017.

QJESFC Surgical repair after SCA

Sudden cardiac arrest – High school sports activities 15-year old boy – Left coronary anomaly

QJESFC Recommendations

2020 Guidelines for adult congenital heart disease

^cHigh-risk anatomy includes features such as an intramural course and orifice anomalies (slit-like orifice, acute-angle take-off, orifice >1 cm above the sinotubular junction).

Surgery is not recommended for AAORCA in asymptomatic patients without myocardial ischaemia and without high-risk anatomy.^c

Surgery should be considered in <i>asympto-</i> <i>matic</i> patients with AAOCA (right or left)	lla	с
and evidence of myocardial ischaemia.		
Surgery should be considered in asympto-	lla	c
matic patients with AAOLCA and no evi-		
dence of myocardial ischaemia but a high-	ma	č
risk anatomy. ^c		
Surgery may be considered for symptomatic		
patients with AAOCA even if there is no	ШЬ	C
evidence of myocardial ischaemia or high-	IID	C
risk anatomy. ^c		
Surgery may be considered for asymptomatic		
patients with AAOLCA without myocardial	ШБ	C
ischaemia and without high-risk anatomy ^c	IID	C
when they present at young age (<35 years).		

Baumgartner H et al. Eur Heart J. 2020.

OSFC

Multimodal imaging – Right coronary anomaly

Angio

CT angio

IVUS

Hata Y et al. Cardiovasc Pathol 2014.

Øsfc

High risk anatomy – Right coronary anomaly

Intramural course

No intramural course

Pre syncope post exertion in 17-year old boy

QJESFC Recommendations

2020 Guidelines on sports cardiologie and exercice in patients with cardiovascular disease

Recommendations for exercise in young individuals/athletes with anomalous origins of coronary arteries

Recommendations	Class ^a	Level ^b	
When considering sports activities, evaluation with imaging tests to identify high-risk patterns and an exercise stress test to check for ischaemia should be considered in individuals with AOCA.	lla	с	
In asymptomatic individuals with an anomalous coronary artery that does not course between the large vessels, does not have a slit- like orifice with reduced lumen and/or intramural course, competition may be considered, after adequate counselling on the risks, provided there is absence of inducible ischaemia.	IIb	с	
After surgical repair of an AOCA, participation in all sports may be considered, at the earliest 3 months after surgery, if they are asympto- matic and there is no evidence of inducible myocardial ischaemia or complex cardiac arrhythmias during maximal exercise stress test.	ПР	с	ESC 2020
Participation in most competitive sports with a moderate and high cardiovascular demand among individuals with AOCA with an acutely angled take-off or an anomalous course between the large vessels is not recommended. ^c	ш	с	0

AOCA = anomalous origin of coronary arteries. ^aClass of recommendation.

^bLevel of evidence.

^cThis recommendation applies whether the anomaly is identified as a consequence of symptoms or discovered incidentally, and in individuals <40 years of age.

Pelliccia A et al. Eur Heart J. 2020.

2020 Guidelines on sports cardiologie and exercice in patients with cardiovascular disease

Pelliccia A et al. Eur Heart J. 2020.

OSFC

Weaknesses

- Guidelines focused on young people
- Very few patients with history of sudden cardiac arrest
- No randomized controlled studies
- Lack of long-term data after correction
- Possible failure (stenosis/aneurysm/thrombosis)

Right coronary anomaly with interarterial course

Difficult decision-making

- 16-year old boy
- Football player
- Asymptomatic
- Pre screening: football training center
- TTE: poorly visualized left ostium
- CTCA: left coronary anomaly
- No induced myocardial ischemia

Difficult decision-making

- 64-year old man
- Intensive sport activities (biking >100 km)
- Diziness during exercice following by syncope
- Exercice stress test: asymptomatic (250 watts)
- CTCA: right coronary anomaly

Much remains to be learn and understand

Thanks to the ANOCOR Group

- Pierre Aubry
- Philippe Degrell
- Patrick Dupouy
- Reza Farnoud
- Xavier Halna du Fretay
- Fabien Hyafil
- Jean-Michel Juliard
- Athanasios Koutsoukis
- Jean-Pierre Laissy
- Phalla Ou