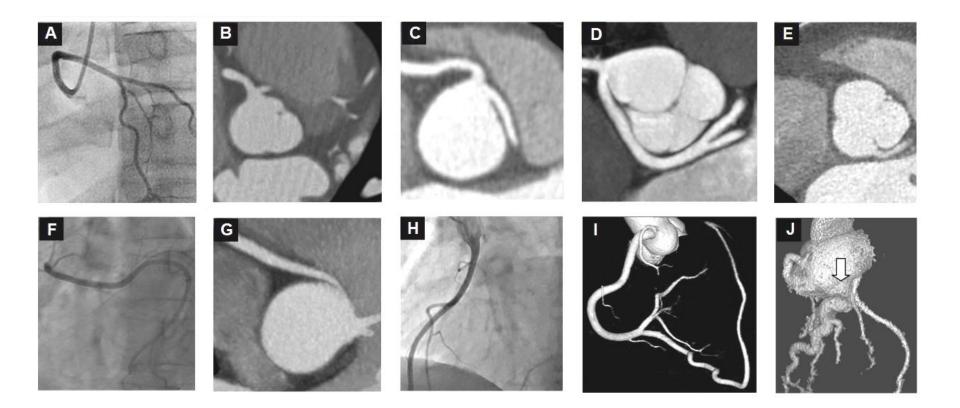

CHORUS SEOUL

November 2017 Seoul, Korea

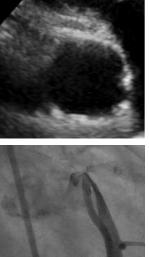
anomalous connection of the right **cor**onary artery with interarterial course

Pierre Aubry on behalf of the ANOCOR Group

Bichat Hospital Paris France

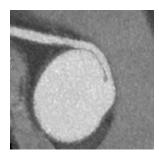


November 2017 Seoul, Korea

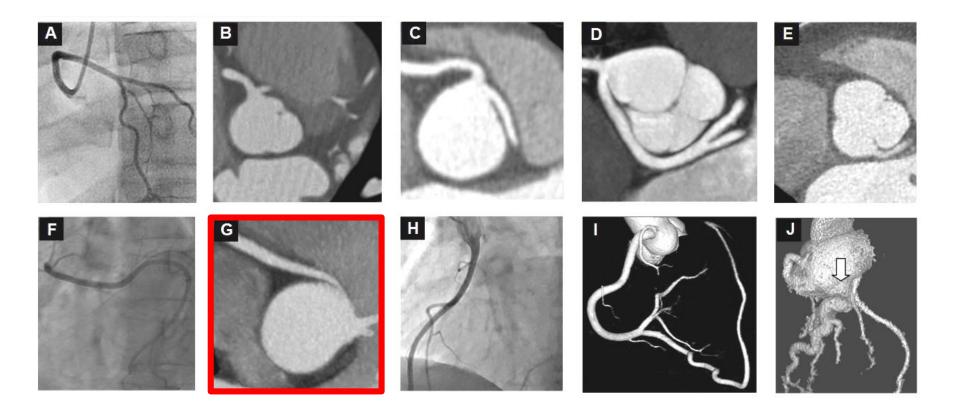

Conflict of interest: nothing to report

Anomalous connections of coronary arteries Wide spectrum of anomalous connections

Anomalous connections of coronary arteries


Prevalence with cardiovascular imaging

Echocardiography 0.2/100


0.8/100

Selective angiography

CT scan angiography 1.2/100

Wide spectrum of anomalous connections

ANOCOR cohort

- n=472 patients
- n=496 abnormalities
- recruitment : 01/2010-01/2013
- 71 French investigators

Coordination

/	HÔPITAUX UNIVERSITAIRES
	PARIS NORD VAL DE SEINE
	Bichat - Claude-Bernard

Grant

6

Groupe Athérome et Cardiologie Interventionnelle de la Société Française de Cardiologie

- Not rare congenital anomaly
- Interarterial course in most of cases
- Very low risk of sudden death in youngs
- Possible ischemia/symptoms in adults
- Management remains debated
- Screening policy in athletes

PREVALENCE IN SELECTED POPULATION

TABLE 1Demographic and angiographic characteristics of theANOCOR cohort

Parameters		
Number of subjects, n	472	
Mean age, y (SD)	63 (13)	
Gender male, %	76.2	
Invasive CA alone, n (%)	297 (62.9)	
Computed tomography CA alone, n (%)	20 (4.3)	
Invasive + computed tomography CA, n (%)	155 (32.8)	
Total number of anomalous connections	496	
Type of artery 60 (12.1) Left main, n (%) 27 (5.4) Circumflex, n (%) 235 (47.4) Right, n (%) 165 (33.3)		
Other, n (%)	9 (1.8)	

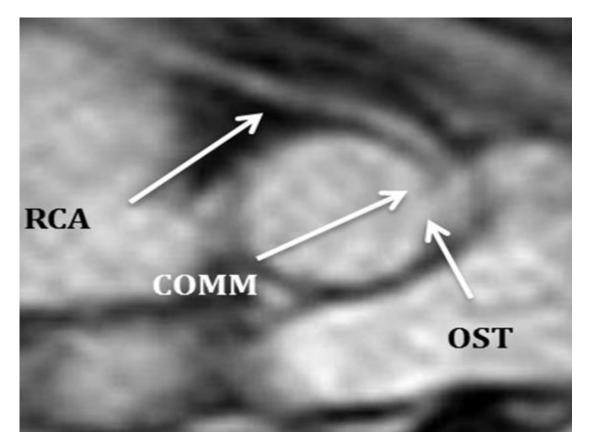
Koutsoukis A. Congenit Heart Dis 2017

PREVALENCE IN YOUNG POPULATION

L-ACAOS = 2 **R-ACAOS = 17**

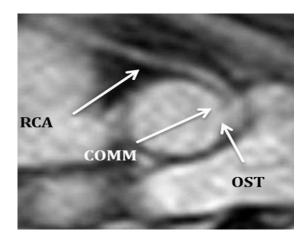
Total ACAOS = 19

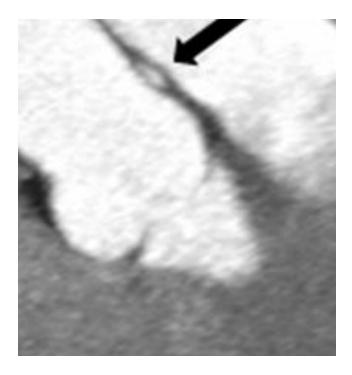
Prevalence L-ACAOS = 0.04%Prevalence R-ACAOS = $0.32\% \approx 3/1000$


Total prevalence ACAOS = $0.35\% \approx 4/1000$

AMERICAN COLLEGE of CARDIOLOGY

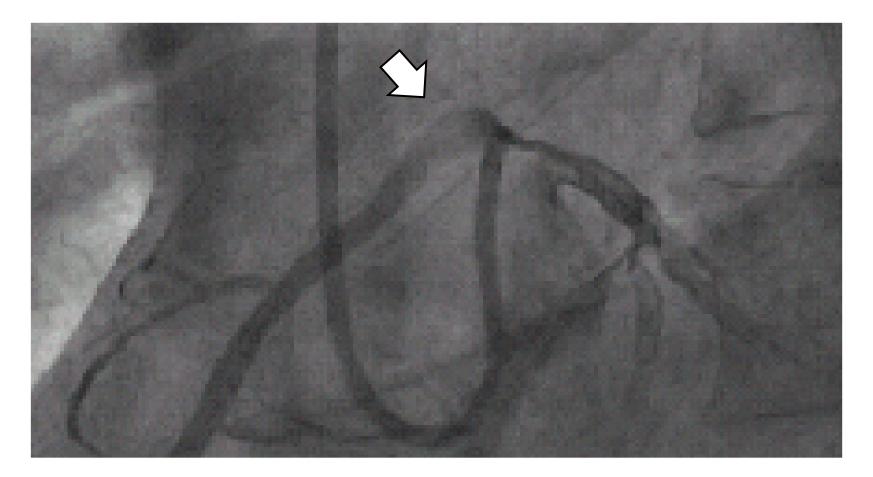
Angelini P. ACC sessions 2017


MRI-based study n = 5.255 middle school children (mean age 13 years) 2010-2017



Angelini P. ACC sessions 2017

MRI-based study n = 5.255 middle school children (mean age 13 years) 2010-2017

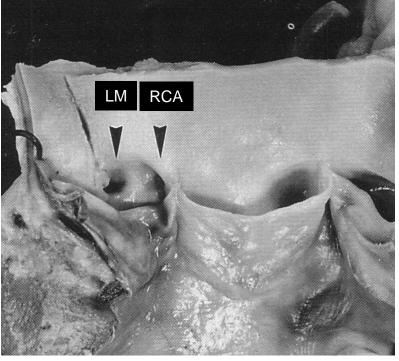


Angelini P. ACC sessions 2017

CHD with risk of sudden cardiac death (estimation)

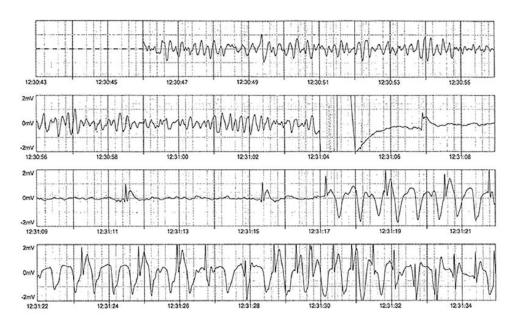
CONGENITAL HEART DISEASE	PREVALENCE cases per 100 000	
Anomalous connections of coronary arteries	350 (0.35%)	
Hypertrophic cardiomyopathy	200 (0.20%)	
Wolf-Parkinson-White syndrome	150 (0.15%)	
Long QT syndrome	50 (0.05%)	
Idiopatic dilated cardiomyopathy	40 (0.04%)	
Arrhythmogenic right ventricular cardiomyopathy	40 (0.04%)	
Brugada syndrome	20 (0.02%)	
Catecholaminergic polymorphic ventricular tachycardia	10 (0.01%)	

anomalous connection of the right coronary artery


CHD with risk of sudden cardiac death (estimation)

CONGENITAL HEART DISEASE	PREVALENCE cases per 100 000
Anomalous connection of right coronary artery	300 (0.30%)
Hypertrophic cardiomyopathy	200 (0.20%)
Wolf-Parkinson-White syndrome	150 (0.15%)
Long QT syndrome	50 (0.05%)
Anomalous connection of left coronary artery	40 (0.04%)
Idiopatic dilated cardiomyopathy	40 (0.04%)
Arrhythmogenic right ventricular cardiomyopathy	40 (0.04%)
Brugada syndrome	20 (0.02%)
Catecholaminergic polymorphic ventricular tachycardia	10 (0.01%)

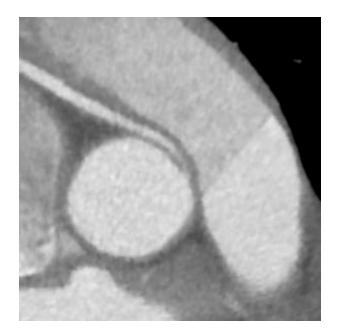
RISK OF SUDDEN CARDIAC DEATH


Risk of sudden cardiac death

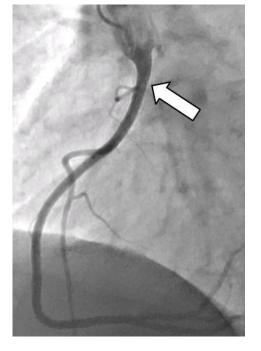
sudden cardiac death

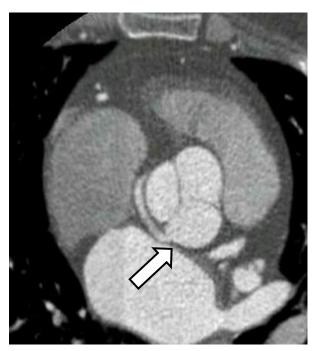
Carrado D. Br Heart J 1992

aborted cardiac arrest

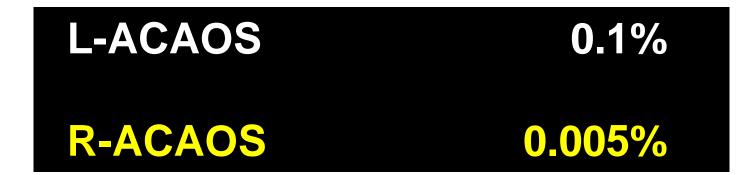

Shimizu T. Intern Med 2014

Anatomic features with risk of SCD




anomalous connection from the opposite sinus with interarterial course

Anomalous connection of RCA	165
Interarterial course	148 (90%)
Other courses	17 (10%)


Aubry P. Eur Heart J 2015

Risk of sudden cardiac death in athletes

- 12-35 years athletic population
- follow-up period of 26 years
- 2.938.270 person-years of observation
- 55 deaths
- 91% during sports activity
- 1.9 deaths/100.000 person-years
- 0.48 deaths/100.000 person-years (cardiomyopathy)
- 0.24 deaths/100.000 person-years (coronary anomaly)

Sudden cardiac death and ACAOS

annual risk of sudden cardiac death (estimation*)

total annual incidence = 0.2%

* general population

CHD with risk of sudden cardiac death (estimation)

CONGENITAL HEART DISEASE	SCD cases per 100 000 / year
Catecholaminergic polymorphic ventricular tachycardia	1500
Hypertrophic cardiomyopathy	1000-2000
Brugada syndrome	1000
Long QT syndrome	500-1000
Idiopatic dilated cardiomyopathy	500-1000
Arrhythmogenic right ventricular cardiomyopathy	500-1000
Wolf-Parkinson-White syndrome	100
Anomalous connection of left coronary artery	100
Anomalous connection of right coronary artery	5

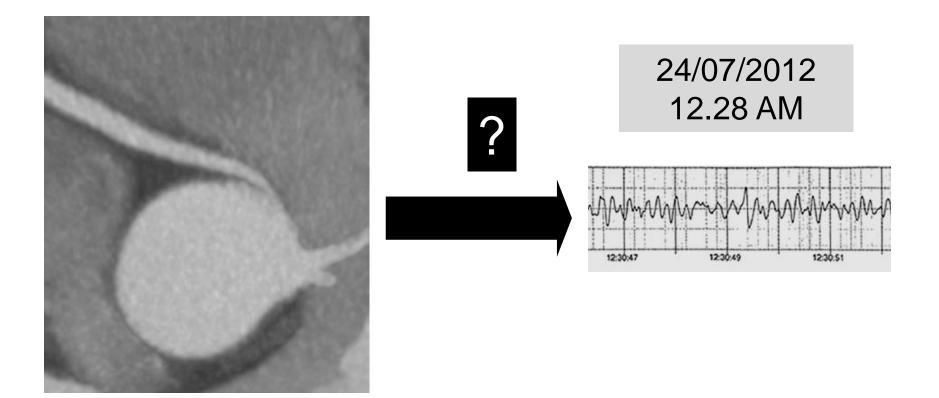
Sudden cardiac death and ACAOS

annual risk of sudden cardiac death (estimation*)

* population with ages 12-35 years Brothers J. J Thorac Cardiovasc Sur 2010

Registry

12 aborted SCD (2.5%) 2 ACAOS-related SCD (0.4%)

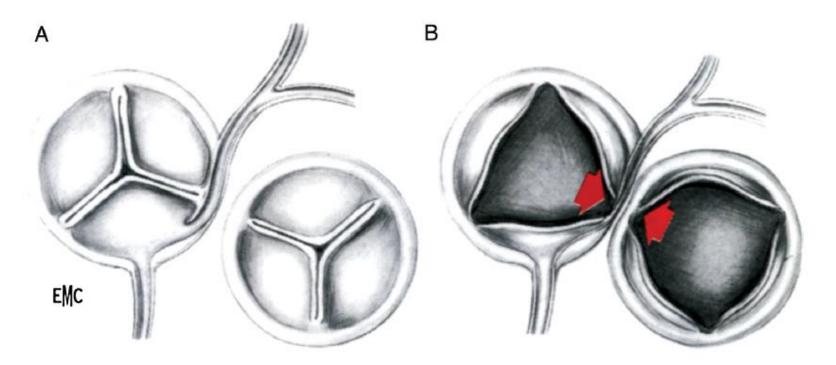

number	age	artery	connection	course	significant CAD
1	50	Сх	contralateral artery	retroaortic	present
2	75	Сх	contralateral artery	retroaortic	present
3	72	Сх	contralateral artery	retroaortic	present
4	16	LM	pulmonary artery	normal	absent
5	53	Сх	contralateral artery	retroaortic	present
6	48	Сх	contralateral artery	retroaortic	absent
7	57	СХ	contralateral artery	retroaortic	present
8	60	RCA	ascending aorta	preaortic	present
9	31	RCA	contralateral sinus	preaortic	absent
10	60	RCA	contralateral sinus	preaortic	present
11	30	RCA	contralateral sinus	preaortic	absent
12	44	СХ	contralateral sinus	retroaortic	absent

Aubry P. Arch Cardiovasc Dis 2016

mechanism(s) of ventricular fibrillation

The exact mechanism of sudden cardiac death associated with anomalous connection of coronary artery **is not known**

mechanism(s) of ventricular fibrillation



mechanism(s) of the ventricular fibrillation

- myocardial ischemia
- limitation of coronary reserve
- myocardial fibrosis area
- abnormal arrhythmic response to ischemia
- hypotension post exercise
- combination of mechanisms
- fortuitous association

Exertional dynamic compression

Raisky O, Vouhé P. EMC 2007

Never demonstrated

2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death

The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)

Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC)

Anomalous connections of coronary arteries : not mentioned

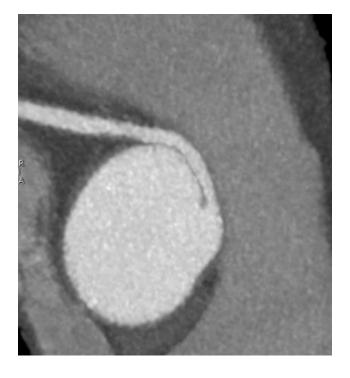
2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary

A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society

4.3. Surgery and Revascularization Procedures in Patients With Ischemic Heart Disease

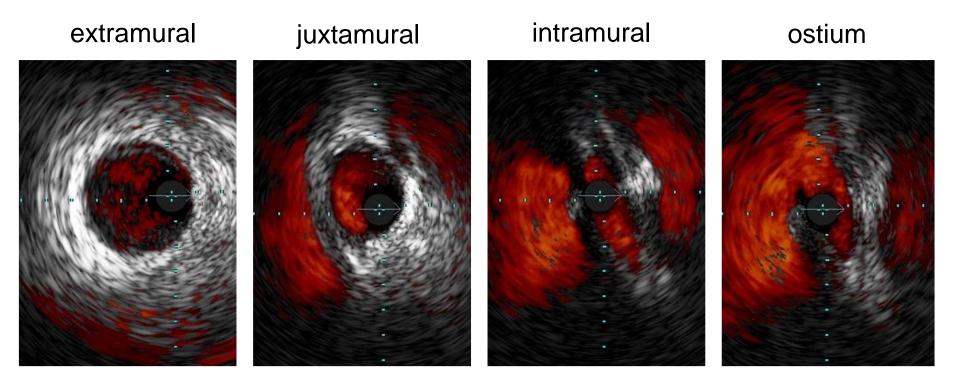
Recommendations for Surgery and Revascularization Procedures in Patients With Ischemic Heart Disease

References that support the recommendations are summarized in Online Data Supplement 11.

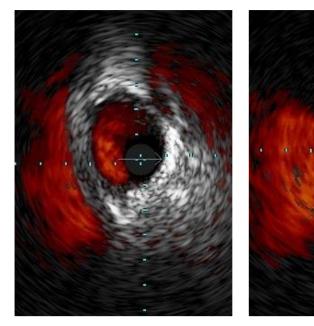

COR	LOE	Recommendations American Heart
I.	B-NR	 Patients with sustained VA and survivors of SCA should be evaluated for ischemic heart disease, and should be revascularized as appropriate (1-4).
I	C-EO	2. In patients with anomalous origin of a coronary artery suspected to be the cause of SCA, repair or revascularization is recommended.

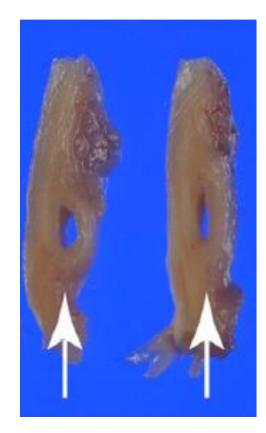
Al-Khatib SM, et al.

(Circulation. 2017;000:e000-e000. DOI: 10.1161/CIR.000000000000548.)


ISCHEMIA/SYMPTOMS

possible in patients >35 year-old

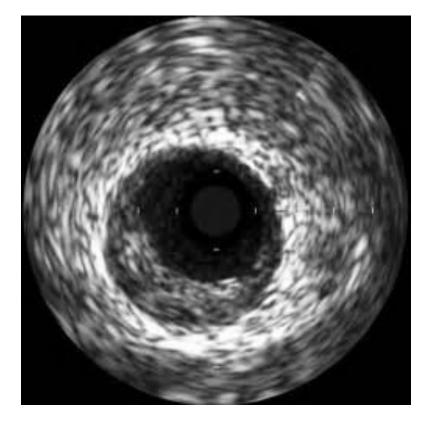

IVUS evaluation of R-ACAOS

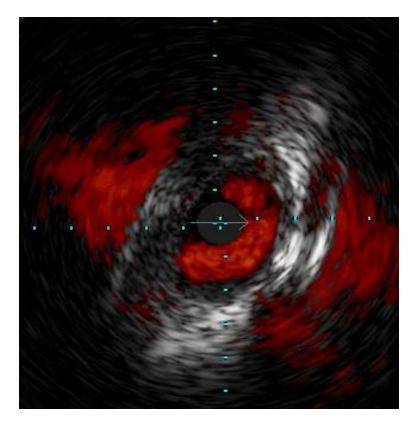


IVUS evaluation of R-ACAOS

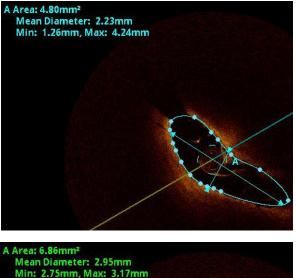
intramural

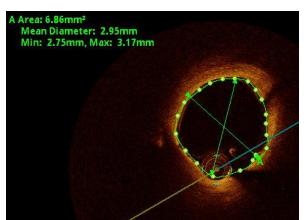
juxtamural

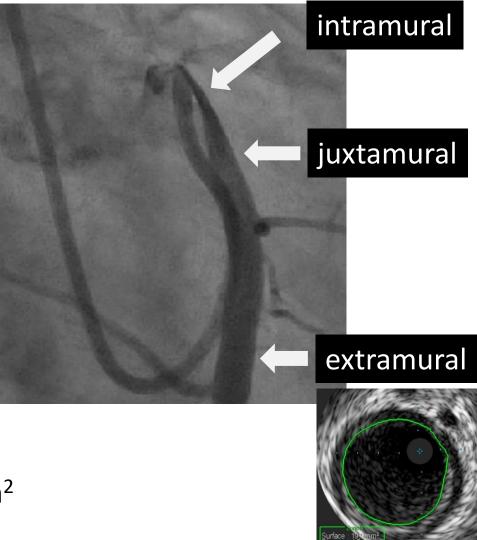



R-ACAOS with intramural course Hata Y et al. Cardiovasc Pathol 2014

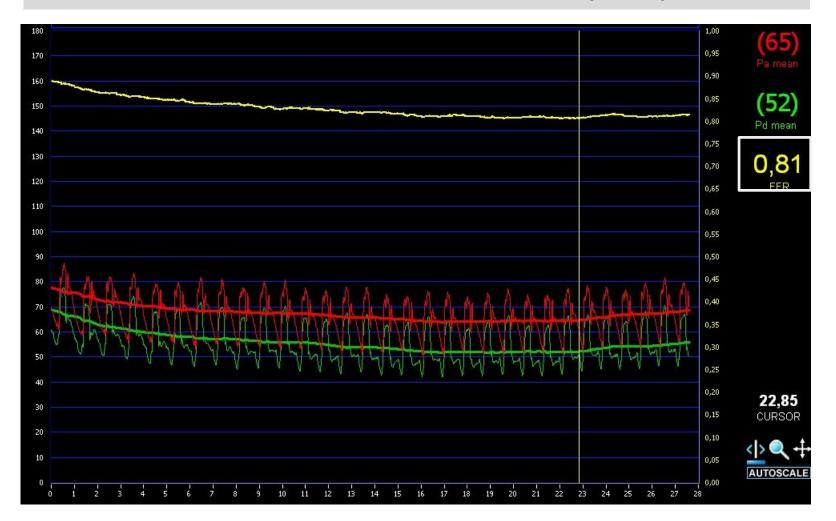
mechanism(s) of myocardial ischemia

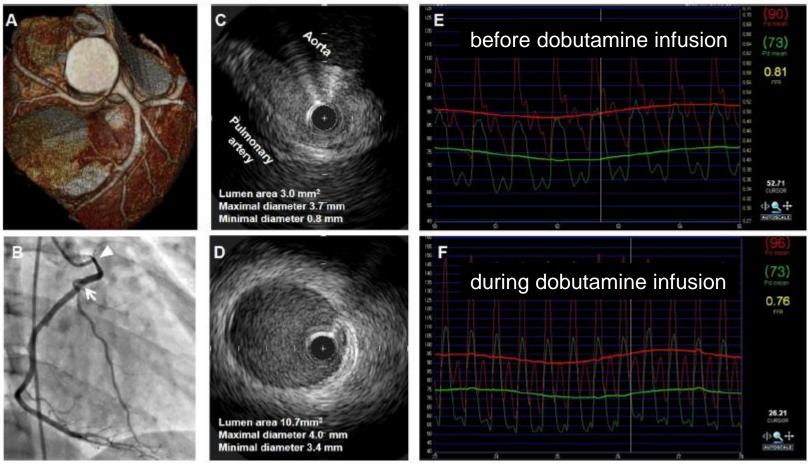

CAD



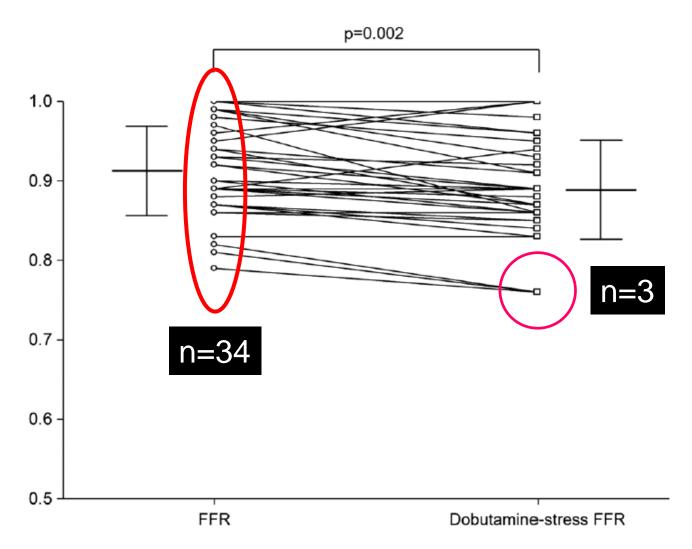


IVUS evaluation of R-ACAOS




minimal lumen area: 4.8 mm² lumen area reduction: 75%

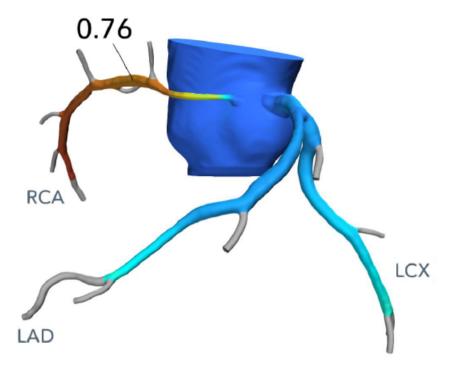
Fractional Flow Reserve (FFR)



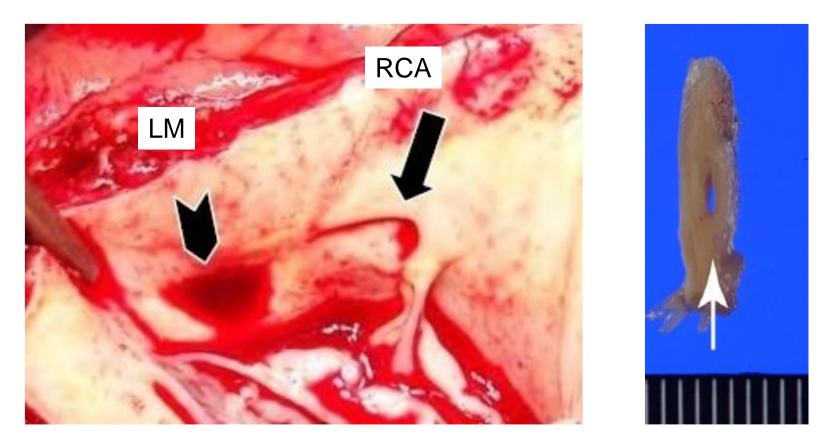
Physiological and clinical relevance of anomalous right coronary artery originating from left sinus of Valsalva in adults

Sang Eun Lee,¹ Cheol Woong Yu,² Kyungil Park,³ Kyung Woo Park,¹ Jung-Won Suh,⁴ Young-Seok Cho,⁴ Tae-Jin Youn,⁴ In-Ho Chae,⁴ Dong-Ju Choi,⁴ Ho-Jun Jang,⁵

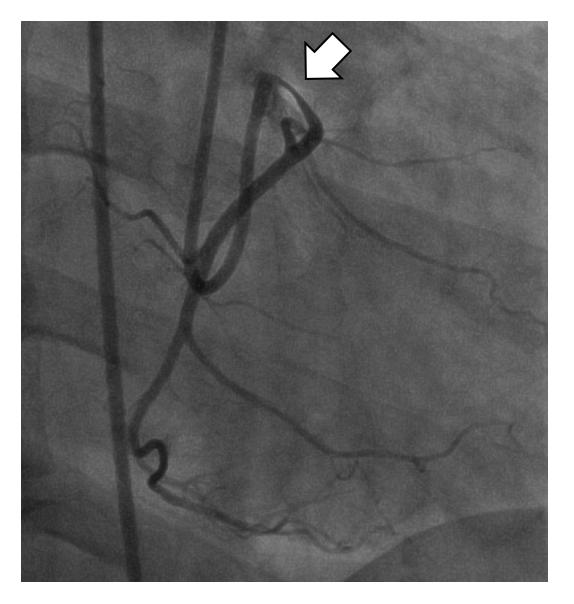
Lee SE, et al. Heart 2016;102:114-119. doi:10.1136/heartjnl-2015-308488


Figure 2 Changes in fractional flow reserve (FFR) with dobutamine infusion. p Value from Wilcoxon signed rank test.

Lee SE, et al. Heart 2016;102:114–119. doi:10.1136/heartjnl-2015-308488



 FFR_{cT} values are specified distal to modeled stenoses > 30%.


anomalous connection of the RCA

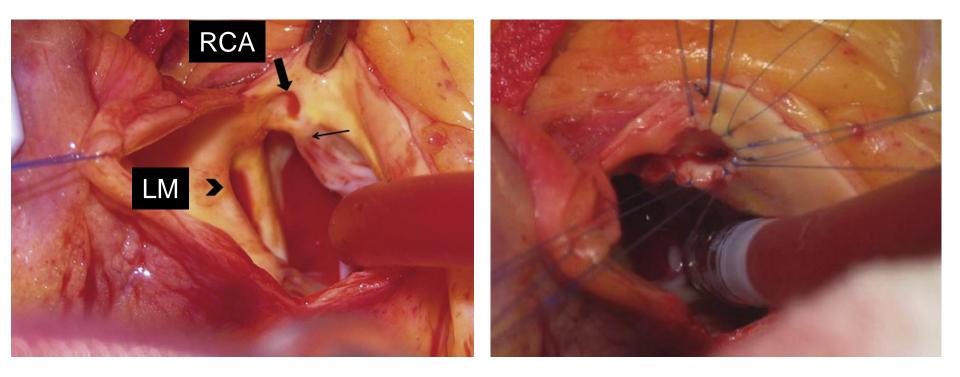
Hata Y Cardiovasc Pathol 2014

PCI in anomalous connections without CAD

- accurate diagnosis of the anomalous connection
- identification of abnormalities requiring correction
- place of PCI?

right anomalous connection without CAD

CURRENT MANAGEMENT


ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease 8.5. Recommendations for Congenital Coronary Anomalies of Ectopic Arterial Origin

CLASS I

Circulation December 2, 2008

- Surgical coronary revascularization should be performed in patients with any of the following indications:
 - a. Anomalous left main coronary artery coursing between the aorta and pulmonary artery. (*Level of Evidence: B*)
 - b. Documented coronary ischemia due to coronary compression (when coursing between the great arteries or in intramural fashion). (*Level of Evidence: B*)
 - c. Anomalous origin of the right coronary artery between aorta and pulmonary artery with evidence of ischemia. (*Level of Evidence: B*)

Unroofing with creation of neo-ostium

Feins EN et al. Ann Thorac Surg 2016

Weaknesses of surgical repair

- Guidelines focused on young people
- Very few patients with history of sudden death
- No randomized controlled studies
- Lack of long-term data after correction
- Possible failure (stenosis/aneurysm/thrombosis)

Copyright © 2017 by The American Association for Thoracic Surgery http://dx.doi.org/10.1016/j.jtcvs.2016.06.066

Expert consensus guidelines: Anomalous aortic origin of a coronary artery

Julie A. Brothers, MD,^a Michele A. Frommelt, MD,^b Robert D. B. Jaquiss, MD,^c Robert J. Myerburg, MD,^d Charles D. Fraser, Jr, MD,^e and James S. Tweddell, MD^f

Origin of the Right Coronary Artery from the Opposite Sinus of Valsalva in Adults: Characterization by Intravascular Ultrasonography at Baseline and After Stent Angioplasty

Paolo Angelini,^{1,2*} MD, Carlo Uribe,² MD, Jorge Monge,² MD, Jonathan M. Tobis,³ MD, MacArthur A. Elayda,⁴ MD, PhD, and James T. Willerson,¹ MD

- retrospective study with 42 ectopic RCA
- mean age 48±12 years (12-73)
- PCI with IVUS guidance (BMS/Cypher/Taxus/Promus stents)
- Indications for angioplasty:

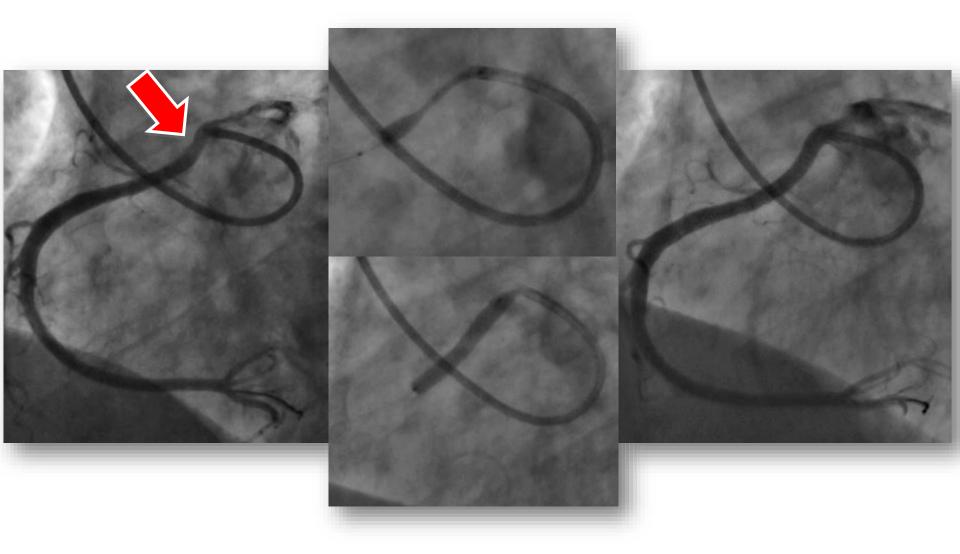
symptoms/ischemia

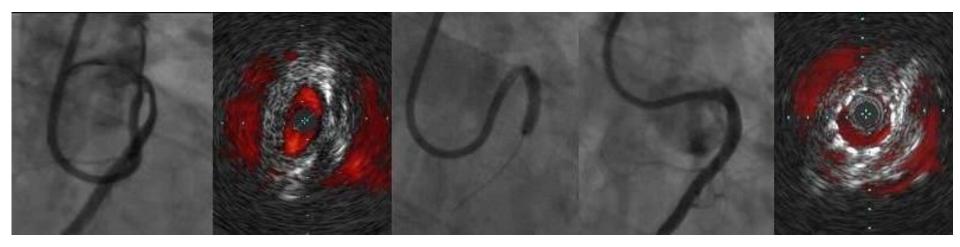
or intensive sport practice

or IVUS surface reduction >50%

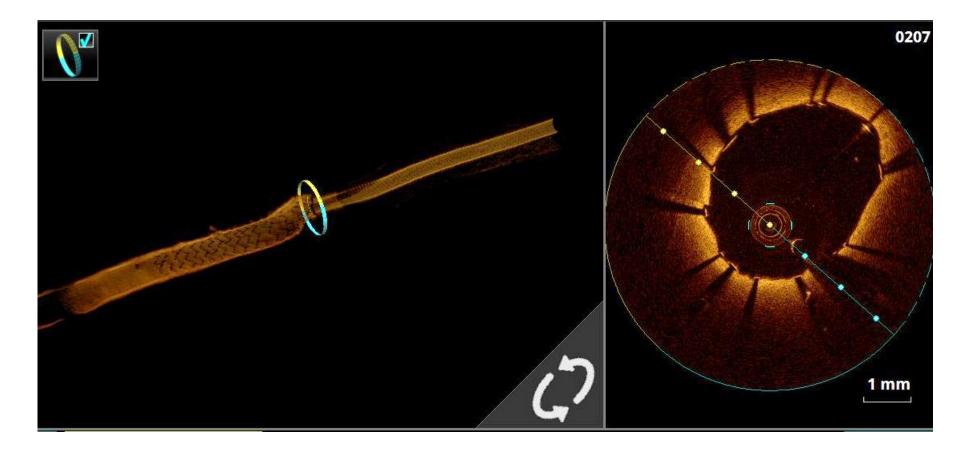
- angiographic success (100%)
- no in-hospital MACE
- angiographic restenosis (4/42)

Catheterization and Cardiovascular Interventions 86:199–208 (2015)

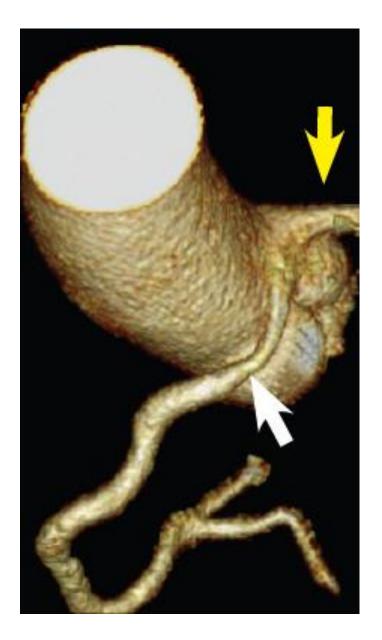

ANOCOR stenting registry (2015) multidisciplinary team


selected population

- right anomalous connection
- age >35 year-old
- no history of aborten sudden death
- angina and/or documented ischemia
- pre aortic course with/without intramural pathway
- no significant CAD associated

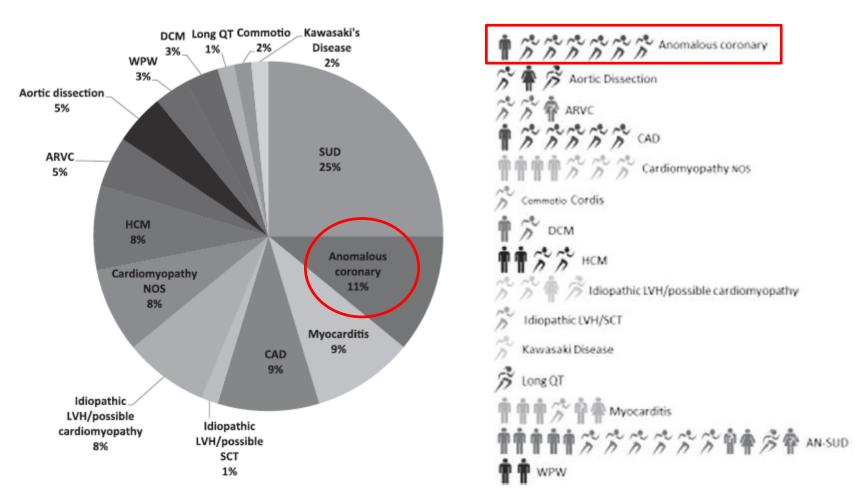

stenting of ectopic right coronary artery

stenting of ectopic right coronary artery



OCT evaluation of R-ACAOS stenting

CT scan at 6 months


How to manage?

- Age <35 or ≥35 year-old
- History of aborted cardiac arrest
- Symptoms / relation with exertion
- Non invasive documented myocardial ischemia
- Anatomic features (CT/angio/IVUS)
- FFR (invasive / non-invasive)
- Competitive activities

Surgery/PCI/observation/exercise restriction

Incidence, Cause, and Comparative Frequency of Sudden Cardiac Death in National Collegiate Athletic Association Athletes

A Decade in Review

Harmon KG. Circulation 2015

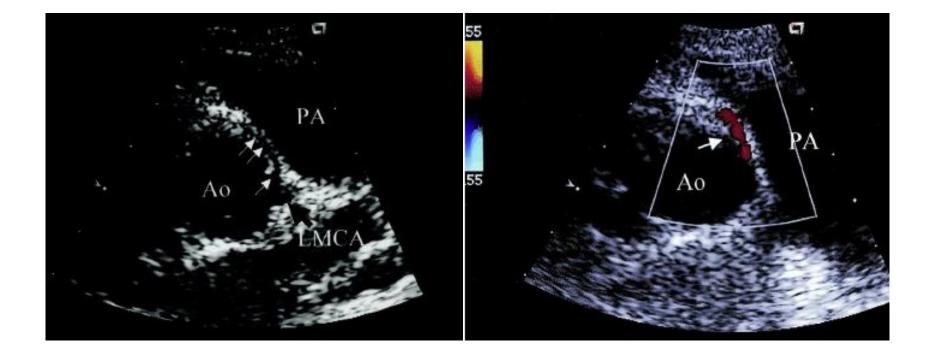
Pre-participation cardiovascular evaluation for athletic participants to prevent sudden death: Position paper from the EHRA and the EACPR, branches of the ESC. Endorsed by APHRS, HRS, and SOLAECE

European Journal of Preventive Cardiology 2017, Vol. 24(1) 41–69 © The European Society of Cardiology 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/2047487316676042 ejpc.sagepub.com

\$SAGE

Coronary congenital abnormalities

PRE-PARTICIPATION CARDIOVASCULAR EVALUATION



- History
- Physical examination

- History
- Physical examination
- ECG

R-ACAOS (transthoracic echocardiography)

Frommelt PC. J Am Coll Cardiol 2003

PRE-PARTICIPATION CARDIOVASCULAR EVALUATION

Cost-efficacy of pre-participation evaluation

Table 4 Studies assessing cost-efficacy of PPE

Study	Target population	Cost/life-year	Cost/life saved	Comments
Fuller (2000) ¹⁷²	High School Athletes	H&P \$84 000 ECG: \$44 000	N/R	Screened once at study entry
Maron et al. (2007) ¹⁷³	High school and middle school athletes	N/R	\$3 400 000	Approximate estimation in a non-dedicated paper
Wheeler et al. (2010) ¹⁷⁴	High school and college athletes (14–22 years)	H&P: 199 000\$ H&P&ECG: \$76 100	N/R	Screened once at study entry
Halkin et al. (2012) ¹⁷¹	Registered high school, college, and professional participants	N/R	\$10 600 000-\$14 400 000	Annual screening
Leslie et al. (2012) ¹⁷⁵	High school (\geq 14 years) freshmen participating in organized sports.	\$91 000	N/R	Screened once at study entry
Schoenbaum et al. (2012) ¹⁷⁶	Athletes \geq 14 years	Adding ECG to H&P: +\$68 000	\$900 000	
Corrado et al. (2013) ¹⁷⁷	Young (12–35 yo) athletes	\sim \$67 000	\sim \$1 350 000	Approximate estimation in a non-dedicated paper
Assanelli et al. (2015) ¹⁷⁸	European and Algerian athletes seeking a sports medical certificate	Europe: 4071 \$PPP Algeria: 582 \$PPP	N/R	Estimation on prospectively collected data

All costs in US dollars or purchasing-power-parity-adjusted US dollars. N/R, Not reported.

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2015 BY THE AMERICAN HEART ASSOCIATION, INC. AND THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. 66, NO. 21, 2015 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2015.09.036

AHA/ACC SCIENTIFIC STATEMENT

Eligibility and Disqualification (Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 4: Congenital Heart Disease

A Scientific Statement From the American Heart Association and American College of Cardiology

George F. Van Hare, MD, FACC, *Chair** Michael J. Ackerman, MD, PHD, FACC* Juli-anne K. Evangelista, DNP, APRN, CPNP-AC, FACC* Richard J. Kovacs, MD, FAHA, FACC* Robert J. Myerburg, MD, FACC* Keri M. Shafer, MD* Carole A. Warnes, MD, FACC* Reginald L. Washington, MD, FAHA*

2. Athletes with an anomalous origin of a right coronary artery from the left sinus of Valsalva should be evaluated by an exercise stress test. For those without either symptoms or a positive exercise stress test, permission to compete can be considered after adequate counseling of the athlete and/or the athlete's parents (in the case of a minor) as to risk and benefit, taking into consideration the uncertainty of accuracy of a negative stress test (Class IIa; Level of Evidence C).

R-ACAOS

- Prevalence in general population: 0.3%
- Presence of interarterial course: 90%
- Association with sudden cardiac death: yes
- Risk of sudden cardiac death: 0.005%/year
- Vulnerability periods: <35 year-old and sport
- Mechanism of sudden cardiac death: ventricular fibrillation
- Mechanism(s) of ventricular fibrillation: ?
- Primary prevention of sudden cardiac death: ?
- Place of screening in athletes: ?
- Ischemia/symptoms in patients >35 year-old: **possible**
- Management of patients >35 year-old: ?
- Place of PCI: ?

Thank you pcaubry@yahoo.fr