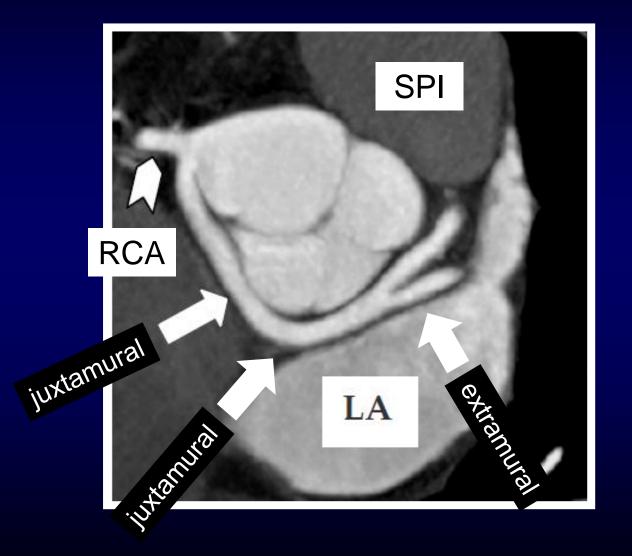
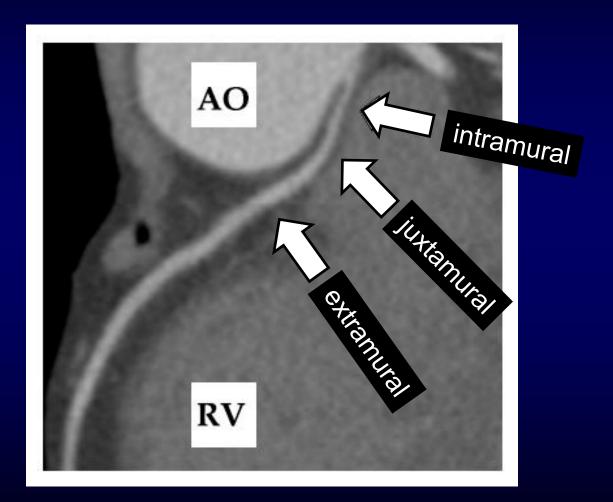


PCI of coronary anomalies: What are the challenges

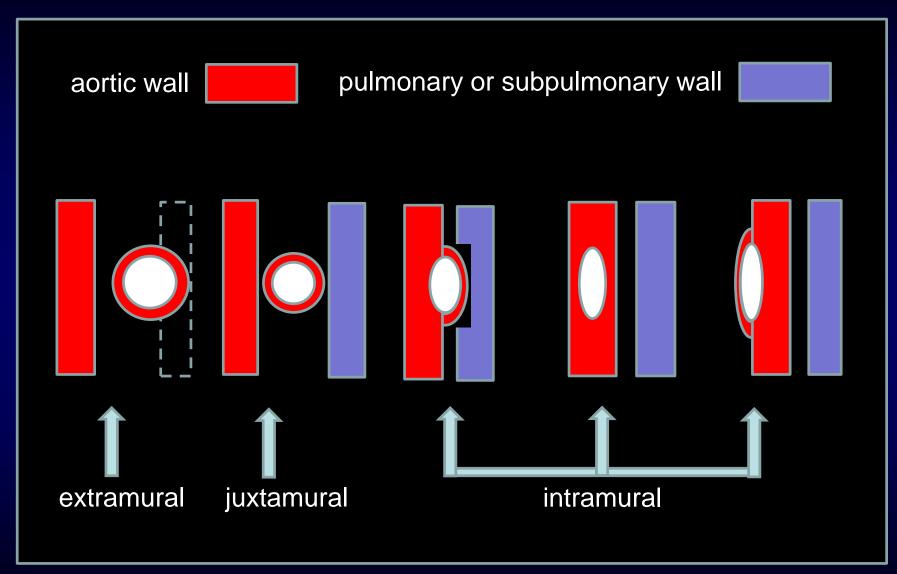
Pierre Aubry on behalf of the ANOCOR Group Centre Hospitalier Bichat-Claude Bernard Assistance Publique-Hôpitaux de Paris France


Disclosure of conflicts of interest: none

Angiographic prevalence of proximal anomalous connections of coronary arteries Adult population with no large vessels disease

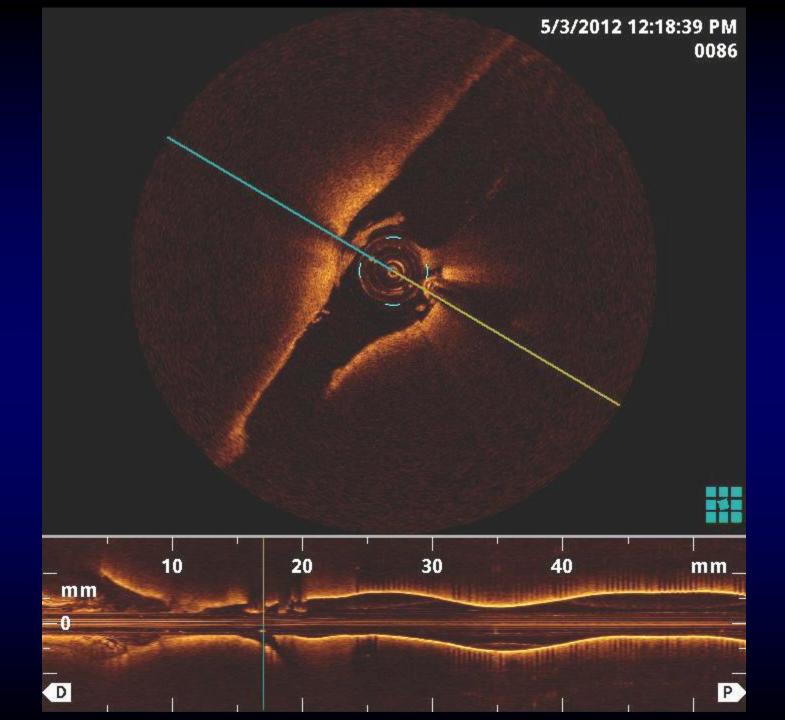

Global prevalence ~ 0.5%

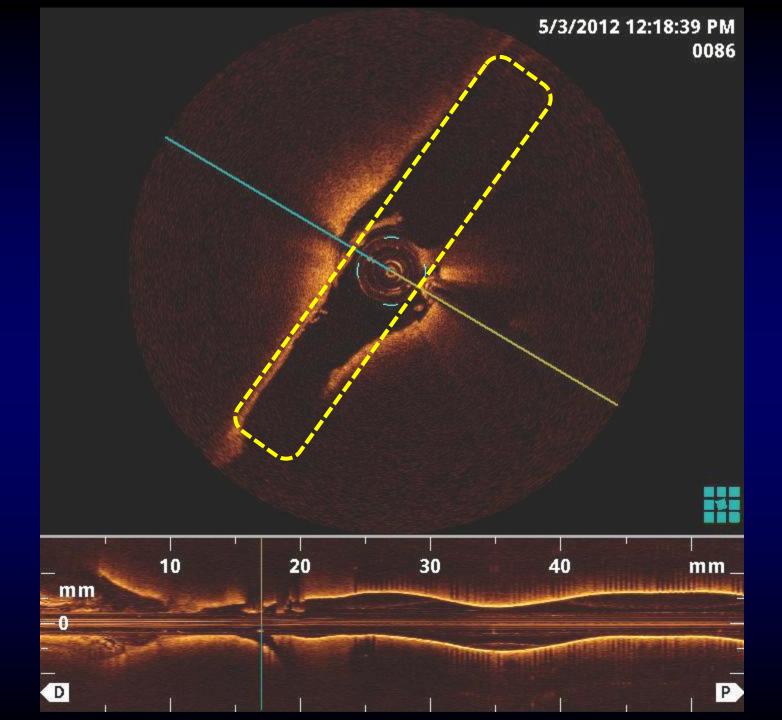
Type of anomaly	%
Anomalous aortic connection of the left main coronary artery	0.02
Anomalous aortic connection of the left anterior descending coronary artery	0.02
Anomalous aortic connection of the circumflex coronary artery	0.3
Anomalous aortic connection of the right coronary artery	0.1
Anomalous connection with the pulmonary artery	0.008
Single artery	0.04


Retroaortic course of CX artery with no intramural pathway

Preaortic course of right coronary artery with intramural pathway

Preaortic course with intramural pathway




Intramural aortic pathway of coronary artery

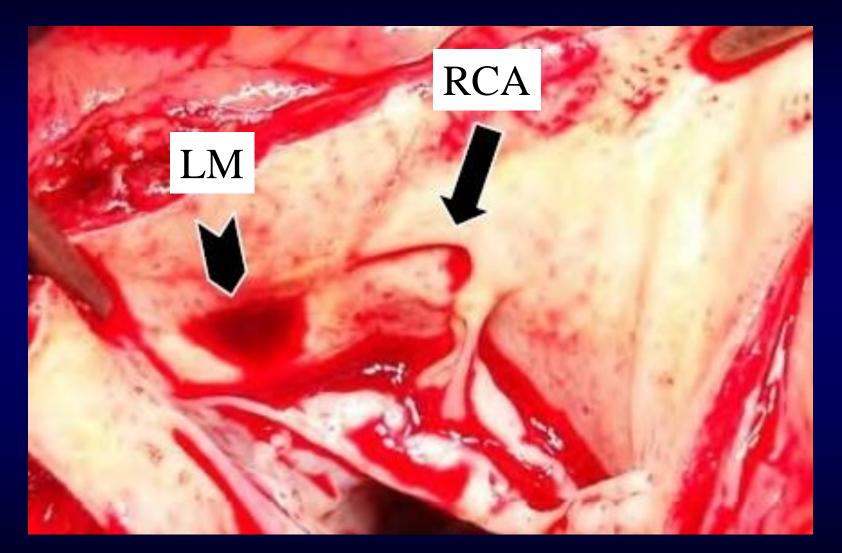
Frescura G et al. Human Pathology 1998

PCI OF CORONARY ANOMALIES: WHAT ARE THE CHALLENGES

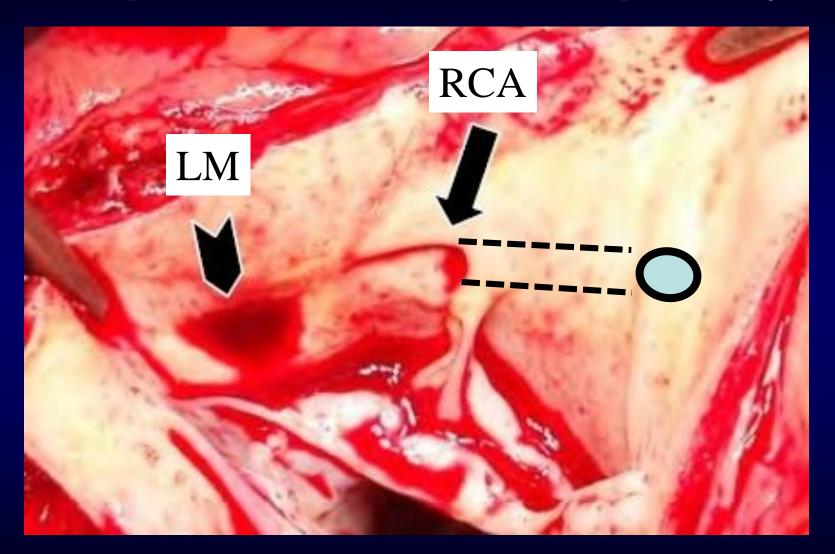
Percutaneous treatment of an anomalous coronary artery with coronary artery disease

- Accurate diagnosis of the coronary abnormality
- Adequate opacification/cannulation of the coronary artery
- Sufficient support of the guiding catheter

PCI OF CORONARY ANOMALIES: WHAT ARE THE CHALLENGES


Accurate diagnosis of the coronary abnormality

Non invasive multislice imaging Cardiac CT scan



- Decrease in misdiagnosis
- Decrease in erroneous interpretation

Ectopic connection of RCA

Ectopic RCA with intramural pathway

Normal connection

Ectopic connection

Coaxial position Cannulation

Coaxial position Cannulation

Normal connection

Ectopic connection

Coaxial position Cannulation Coaxial position Cannulation

Catheters

- Amplatz Left 2.0 or 3.0
- Extra Back-Up 3.5 or 4.0
- Judkins Left 4.0
- Amplatz Right 2.0
- Multipurpose
- Judkins Right 4.0 or 5.0

no dedicated catheter

CASE REPORT Korean Circ J 2008;38:179-183

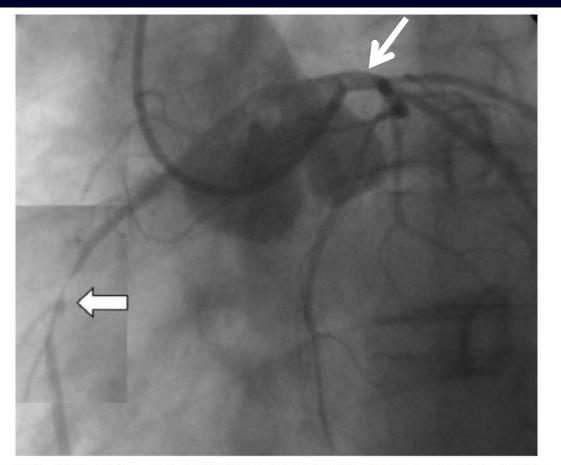


Fig. 2. Baseline coronary angiogram showed an anomalous right coronary artery (RCA) ostium (small arrow) and subtotal occlusion of the mid-RCA (large arrow).

Jong Yeon Kim, MD¹, Sang Goo Yoon, MD¹, Joon Hyung Doh, MD^{1,2}, Hyun Min Choe, MD¹, Sung Uk Kwon, MD¹, June Namgung, MD¹, Sung Yun Lee, MD¹ and Won Ro Lee, MD¹ CASE REPORT Korean Circ J 2008;38:179-183

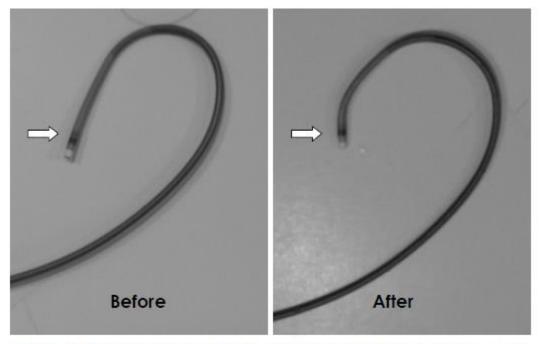


Fig. 3. 5 French launcher EBU4 guiding catheter. Before: the natural shape of the EBU4 guiding catheter. After: the manually manipulated EBU4 guiding catheter (arrow) using a hair dryer. EBU: extra-backup.

Jong Yeon Kim, MD¹, Sang Goo Yoon, MD¹, Joon Hyung Doh, MD^{1,2}, Hyun Min Choe, MD¹, Sung Uk Kwon, MD¹, June Namgung, MD¹, Sung Yun Lee, MD¹ and Won Ro Lee, MD¹

CASE REPORT Korean Circ J 2008;38:179-183

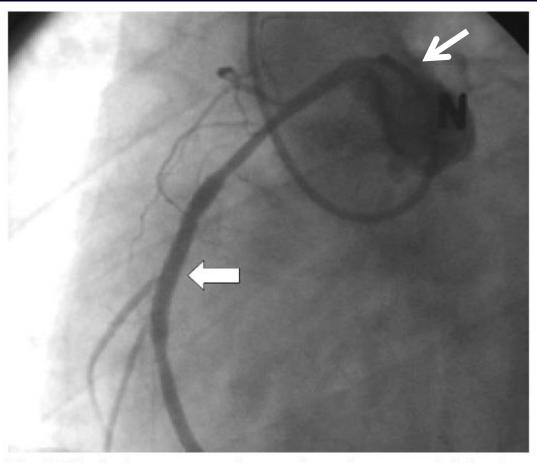


Fig. 4. The final coronary angiogram showed a successfully implanted stent at the mid right coronary artery (arrow).

Jong Yeon Kim, MD¹, Sang Goo Yoon, MD¹, Joon Hyung Doh, MD^{1,2}, Hyun Min Choe, MD¹, Sung Uk Kwon, MD¹, June Namgung, MD¹, Sung Yun Lee, MD¹ and Won Ro Lee, MD¹

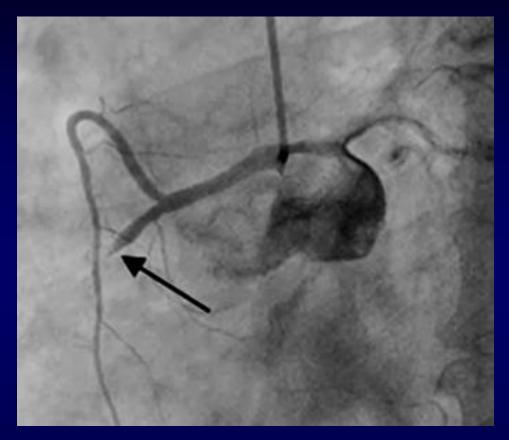
- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)

- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)

- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)

- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)

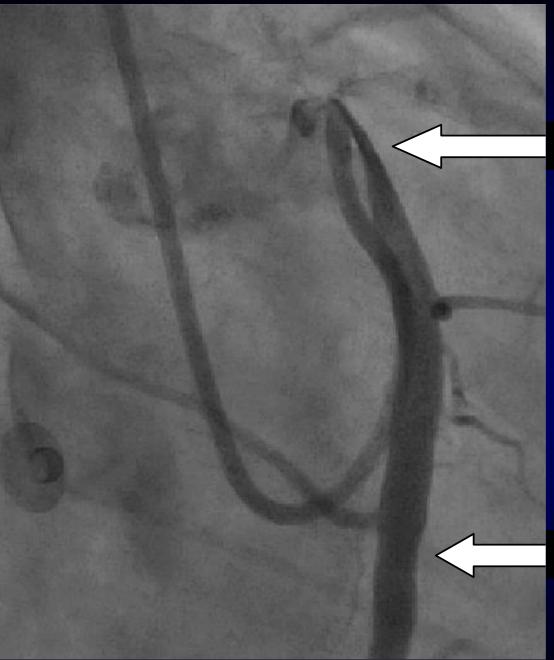
- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)


- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)

- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)

- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)

- 1. Left anterior oblique projection
- 2. Use of 5/6F guiding catheters
- 3. Use of Amplatz Left or Extra Back-Up catheters
- 4. Cannulation of the left ostium
- 5. Push the catheter gently to extubate from the ostium
- 6. Torque the catheter slowly and clockwise
- 7. Tip of the catheter may arrive facing the ectopic ostium
- 8. Opacification of the ectopic coronary artery
- 9. Rapid insertion of a guide wire (optional)


Ectopic connection and associated CAD

Two challenges :

- opacification of the ectopic vessel

- good back-up support

intramural pathway

atheroma plaque

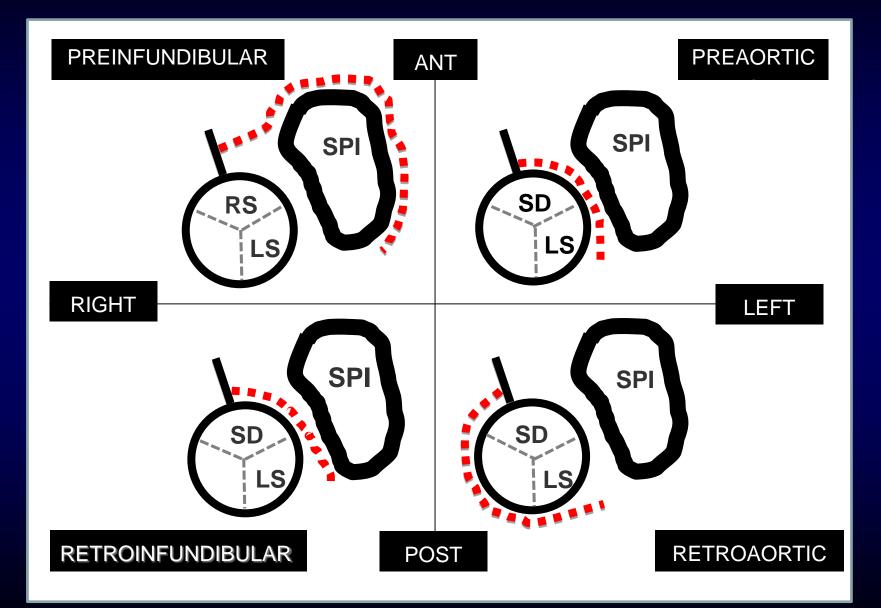
Preaortic course with intramural segment and atheroma: association?

Intramural aortic course: anatomical feature protective against atherosclerotic process?

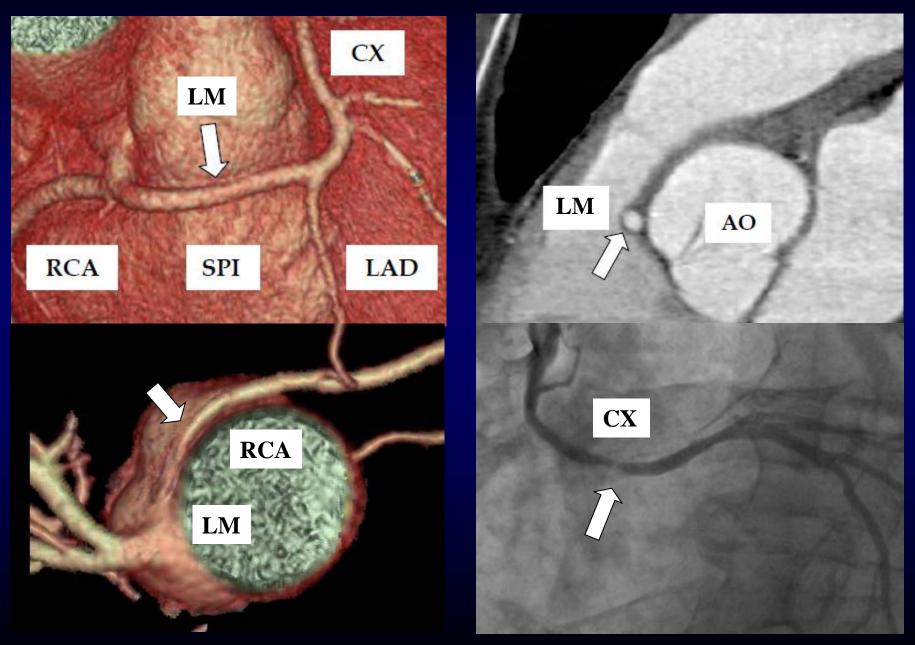
PCI of RCA arising from left coronary sinus How to improve back-up support

- Additional guide wire in ectopic artery
- Additional guide wire in non ectopic coronary
- Anchoring technique with balloon

PCI of RCA arising from left coronary sinus


Opacification of anomalous connection CX arising from right coronary sinus

Catheters


- Judkins Right 4.0
- Multipurpose
- Amplatz Left 1 or 2
- Amplatz Right 1 or 2

no dedicated catheter

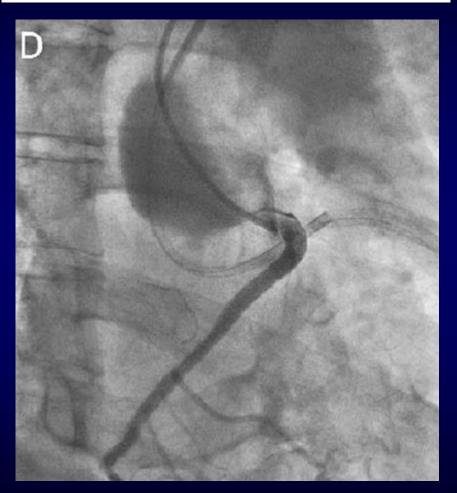
Possible ectopic courses of left main

Ectopic segment and CAD prevalence

Ectopic segment and CAD prevalence

Adult population > 35-year-old

Ectopic course	CAD prevalence
Preinfundibular course	low
Retroinfundibular course	OW
Preaortic course (intramural segment)	unknown
Preaortic course (juxtamural segment)	low
Retroaortic course	high


Mechanisms to explain that the retroaortic segment is more likely to develop CAD remain unknown

Opacification of anomalous connection Risks

- Long procedures
- Numerous manoeuvers with catheters
- Large amount of contrast media
- Excessive exposition to radiation
- Traumatic dissection of proximal segment

Consider coronary CT scan ... Ad hoc PCI not recommended (lack of suitable catheter) Femoral route better than radial route ? Treatment of Aortocoronary Dissection Complicating Anomalous Origin Right Coronary Artery and Chronic Total Intervention with Intravascular Ultrasound Guided Stenting

Sayed M. Abdou,¹ MD, and Chiung-Jen Wu,^{2*} MD

Catheterization and Cardiovascular Interventions 78:914–919 (2011)

PCI OF CORONARY ANOMALIES: WHAT ARE THE CHALLENGES

Percutaneous treatment of a coronary abnormality

- Accurate diagnosis of the anomalous connection
- Identification of coronary abnormalities requiring correction
- Role of PCI ?

PCI OF CORONARY ANOMALIES: WHAT ARE THE CHALLENGES

Percutaneous treatment of a coronary abnormality

Coronary abnormalities requiring correction

- Anomalous connections with preaortic course
- Preaortic courses with intramural segment

Coronary abnormalities requiring a correction How to treat anomalous connections

> ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease

J Am Coll Cardiol 2008;52:e143-263

Coronary abnormalities requiring a correction How to treat anomalous connections

8.5. Recommendations for Congenital Coronary Anomalies of Ectopic Arterial Origin

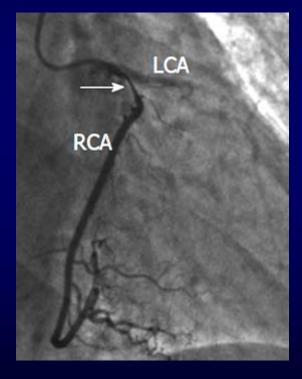
CLASS I

- 3. Surgical coronary revascularization should be performed in patients with any of the following indications:
 - a. Anomalous left main coronary artery coursing between the aorta and pulmonary artery. (*Level of Evidence: B*)
 - b. Documented coronary ischemia due to coronary compression (when coursing between the great arteries or in intramural fashion). (*Level of Evidence: B*)
 - c. Anomalous origin of the right coronary artery between aorta and pulmonary artery with evidence of ischemia. (*Level of Evidence: B*)

J Am Coll Cardiol 2008;52:e143-263

Ectopic intramural course Specific treatement with angioplasty

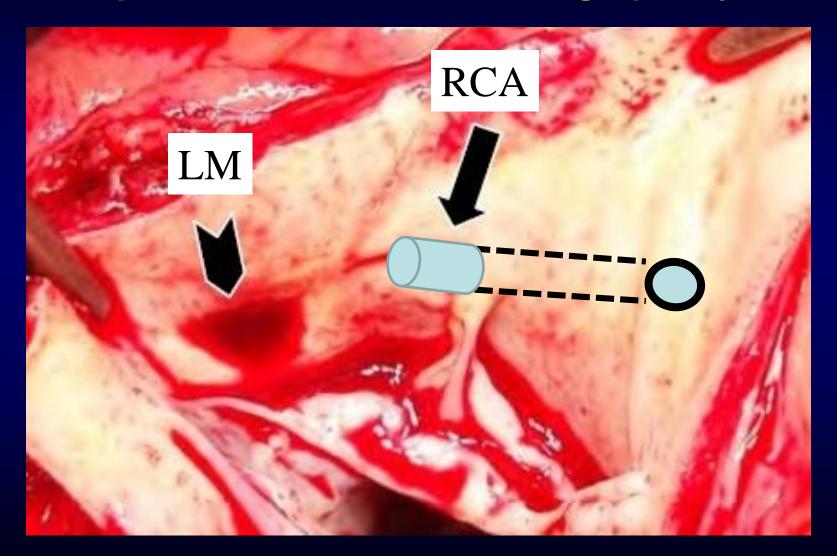
Online Submissions: http://www.wjgnet.com/1949-8462office wjc@wjgnet.com doi:10.4330/wjc.v3.i2.54 World J Cardiol 2011 February 26; 3(2): 54-56 ISSN 1949-8462 (online) © 2011 Baishideng. All rights reserved.


CASE REPORT

Right coronary artery from the left sinus of valsalva: Multislice CT and transradial PCI

Rodrigo Bagur, Onil Gleeton, Yoann Bataille, Sylvie Bilodeau, Josep Rodés-Cabau, Olivier F Bertrand

Ectopic intramural course Specific treatement with angioplastie Case report


42 year old-woman - angina - isotopic inferior ischemia - no atheroma

Ectopic RCA Amplatz Left 2.0 BMS 3.5 x 16 mm

Ectopic connection of RCA Specific treatement with angioplasty

Ectopic course with intramural course Interventional correction

Efficacy and safety of percutaneous traitement with stenting remain to be demonstrated

Knowledge of cardiac anatomy

- Liberal use of cardiac computed tomography
- Large choice of guiding catheters
- Techniques to improve back-up support
- Help from a more experienced colleague
- And patience ...

Knowledge of cardiac anatomy

- Liberal use of cardiac computed tomography
- Large choice of guiding catheters
- Techniques to improve back-up support
- Help from a more experienced colleague
- And patience ...

Knowledge of cardiac anatomy

- Liberal use of cardiac computed tomography
- Large choice of guiding catheters
- Techniques to improve back-up support
- Help from a more experienced colleague
- And patience ...

- Knowledge of cardiac anatomy
- Liberal use of cardiac computed tomography
- Large choice of guiding catheters
- Techniques to improve back-up support
- Help from a more experienced colleague
- And patience ...

- Knowledge of cardiac anatomy
- Liberal use of cardiac computed tomography
- Large choice of guiding catheters
- Techniques to improve back-up support
- Help from a more experienced colleague
- And patience …

- Knowledge of cardiac anatomy
- Liberal use of cardiac computed tomography
- Large choice of guiding catheters
- Techniques to improve back-up support
- Help from a more experienced colleague
- And patience

PCI of coronary anomalies

Acknowledgements to ANOCOR Group French interventional cardiologists (n=73)

ANOCOR study

- Ongoing observational prospective study
- Cohort of 460 adults with no structural heart disease
- Proximal anomalous connections of coronary arteries
- Enrollment closed on 31 january 2013
- Primary end-point : type of specific treatment after the discovery of the coronary abnormality (no treatment, medical treatment, PCI, or surgery)
- Follow-up at 1, 3 and 5 years

This study is supported by the

Groupe Athérome et Cardiologie Interventionnelle de la Société Française de Cardiologie www.sfcardio.fr